

EDOS

HIGH RATE RETURN LINK PROTOTYPE BRIEFING

to the

EOSDIS TECHNOLOGY TRANSFER WORKSHOP

Background - EDOS Prototyping

- EDOS HR prototyping efforts started in January 1995
- Purpose of prototyping was to reduce technical risk
 - achieving the 150 Mbps for the HRRL
 - HiPPI interface between HR Return Link Formatter Component (RLFC) and HR Service Processor
 - Mass Storage interface to the HRRL component
 - FDDI interface for file transfers

TRW

Topics

- Summary of Prototype Results
- High Rate Prototype Within EDOS
- Functional Overview
- HRRL Service Processor Software Architecture
- Hardware Architecture
- HRRL Prototyping Results

Summary of Prototype Results

- Our High Rate Return Link (HRRL) prototype software design and its implementation on a Symmetric Multiprocessor achieved (exceeded) the required EDOS HRRL rates
 - Virtual Channel Service: maximum achieved rate = 377 Mbps (150 Mbps required)
 - Path Service: maximum achieved rate = 172,000 206,000 pps (40,000 pps required) for 80 100 byte packets at ~150 Mbps
 - sustained runs exceeded 20 minutes (greater than a nominal TSS)
- Demonstrated the integration and performance of HiPPI and FDDI interfaces with the target platforms
- Achieved an efficient, integrated COTS Mass Storage solution
- Produced a reusable software solution for the EDOS HRRL development
- HRRL prototyping validates the EDOS design approach and minimizes technical risk

EDOS

EOS Data and Operations System

High Rate Return Link Prototype

TRW

High Rate Prototype Within EDOS

EDOS DIF

EDOS

EOS Data and Operations System

High Rate Return Link Prototype

TRW

Functional Overview

PCWG (Physical Channel Work Group) consists of 504 Frames

TRW

HRRL Service Processor Software Architecture

- Designed for a Symmetric Multiprocessor (SMP) single computer with multiple CPUs that execute concurrently
 - EDOS SMP is an SGI Challenge with 8 CPUs (prototype uses 5 CPUs)
- HRRL functions were decomposed into 4 "processes" that simultaneously perform their task (pipeline)
 - Read obtains the telemetry data from HiPPI and stores in memory
 - Demux (virtual sort) demultiplexes the data and creates instruction tables to identify and group the data by VCID and APID
 - Copy (physical sort) uses the instruction table to read data from and copy data to memory; multiple Copy processes execute concurrently
 - Schedule Write monitors the Copy processes and uses the instruction table to schedule a write when a memory buffer is full

14 November 1995

TRW

HRRL Service Processor Pipeline Processing

EOS Data and Operations System

High Rate Return Link Prototype

TRW

Hardware Architecture

- (8) 200 MHz R4400 CPUs (expandable to 36 processors)
- Data Cache: 16 KB (per CPU)
- Instruction Cache: 16 KB (per CPU)
- Secondary Unified Instruction/Data Cache: 4MB (Per CPU)
- Main Memory: 256 MB, 2-way interleaved
- Disks: (4) RAID-3 Disk Arrays over (4) SCSI (F/W) Controllers

HRRL Prototyping Results

- Virtual Channel Service
 - EDOS requirement: 150 Mbps (18,400 frames per

second)

■ maximum achieved rate: 377 Mbps (45,000 frames per

second)

- Path Service
 - EDOS requirement:
 - 40,000 packets per second (400 byte packets) @ 150
 Mbps
 - maximum achieved rates:
 - 172,000 packets per second (100 byte packets) @ 154
 Mbps
 - 206,000 packets per second (80 byte packets) @ 148
 Mbps
 - 104,000 packets per second (400 byte packets) if input rate rate is unconstrained (375 Mbps)

 14 November 1995

HRRL Prototyping Results (Continued)

- Processing rates sensitivities
 - PCWG size
 - the bigger the PCWG, the less computer load incurred per transfer
 - selection of the PCWG size was a direct output of prototyping and the generation of the Harris RLFC ICD
 - + recommended PCWG size is 0.5 MB consistent with ending on a full frame
 - Packet and VCDU size AM-1 specs
 - small packet and small VCDUs require similar processing resources
 - testing using a variety of packet sizes (including AM-1 data specs) shows overall computer load increases as packet size decreases